A Paley-wiener Theorem for the Spherical Laplace Transform on Causal Symmetric Spaces of Rank 1 Nils Byrial Andersen and Gestur Olafsson
نویسنده
چکیده
We formulate and prove a topological Paley-Wiener theorem for the normalized spherical Laplace transform deened on the rank 1 causal sym
منابع مشابه
An application of Shift Operators to ordered symmetricspacesNils
We study the action of elementary shift operators on spherical functions on ordered symmetric spaces M m;n of Cayley type, where m 2 N denotes the multiplicity of the short roots and n 2 N the rank of the symmetric space. For m even we apply this to prove a Paley-Wiener theorem for the spherical Laplace transform deened on M m;n by a reduction to the rank 1 case. Finally we generalize our notio...
متن کاملReal Paley-wiener Theorems for the Inverse Fourier Transform on a Riemannian Symmetric Space
The classical Fourier transform Fcl is an isomorphism of the Schwartz space S(Rk) onto itself. The space C∞ c (Rk) of smooth functions with compact support is dense in S(Rk), and the classical Paley-Wiener theorem characterises the image of C∞ c (R k) under Fcl as rapidly decreasing functions having an holomorphic extension to Ck of exponential type. Since Rk is self-dual, the same theorem also...
متن کاملPALEY - WIENER THEOREMS FOR HYPERBOLIC SPACESby
We prove a topological Paley-Wiener theorem for the Fourier transform deened on the real hyperbolic spaces SO o (p; q)=SO o (p ? 1; q), for p; q 2 2N, without restriction to K-types. We also obtain Paley-Wiener type theorems for L-Schwartz functions (0 < 2) for xed K-types.
متن کاملPaley-wiener Theorem for Line Bundles over Compact Symmetric Spaces
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Chapter 2: Riemannian Symmetric Spaces and Related Structure Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....
متن کاملOn Fourier and Hankel Sampling
We use the Paley–Wiener theorem for the Fourier and Hankel transforms to compare Fourier and Hankel Sampling.
متن کامل